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Abstract

Conventional cameras typically produce blurry images
for objects that are not in focus. Some camera systems have
been developed to either capture all-focus images or ex-
tract depth information, but these systems often require spe-
cialized hardware and result in reduced spatial resolution.
Coded aperture involves modifying a conventional camera
to simultaneously capture high-resolution image informa-
tion and depth information.

1. Introduction
In this study, we present a method for capturing both

high resolution RGB images and coarse depth information
using a single image capture and minimal modification to a
traditional camera system. Our approach involves attaching
a simple piece of cardboard to the lens, which may require
occasional user assistance. Our method does not utilize any
prior information during image generation, but instead em-
ploys local deconvolution on regions of interest. This allows
for fast image generation with impressive results. Image
analysis often involves extracting information from specific
regions of interest within the image, rather than the entire
image. This is because images often contain few objects of
interest, and it is more useful to obtain information about
these regions. We focus on retrieving high resolution and
depth information for these regions of interest within the
image.[need referance].Our approach, which falls under the
category of computational photography, differs from other
methods in that it allows for the recovery of both image and
depth information from a single image. Our method is in-
spired by techniques in coded aperture imaging and wave-
front coding, and involves controlling the defocus produced
by the lens to enable the estimation of distance informa-
tion and the compensation for at least part of the defocus
to produce artifact-free images. In contrast to traditional
photography, which captures only a 2-dimensional projec-
tion of the 3-dimensional world, modifications to recover
depth typically require multiple images or active methods
with additional equipment such as light emitters. Our sys-

tem, on the other hand, allows photographers to continue
capturing images in the same way they always have while
also providing the added benefit of coarse depth informa-
tion, which can be used for refocusing (extending the depth
of field) and depth-based image editing.

Concept To understand the concept of defocus and how
we can control and exploit it, consider Figure 2, which il-
lustrates a simplified thin lens model that maps light rays
from the scene onto the sensor. When an object is placed at
the focus distance D, all the rays from a point in the scene
will converge to a single sensor point, and the output im-
age will appear sharp. However, if the object is placed at
a distance Dk away from the focus distance, the rays from
the object will land on multiple sensor points, resulting in
a blurred image. The pattern of this blur is determined by
the aperture cross-section of the lens and is often referred
to as a circle of confusion. The amount of defocus, char-
acterized by the blur radius, depends on the distance of the
object from the focus plane.

For a simple planar object at distance Dk , the imaging
process can be modeled as a convolution:

y = fk ∗ x (1)

The goal is to determine a method for recovering both a
depth map and a sharp image from a single blurry image.
The blurry image (y) is related to the true sharp image (x)
through a blur filter (fk), which is a scaled version of the
aperture shape and may also be convolved with the diffrac-
tion pattern. The pattern of blur from a conventional lens
with the pentagonal disk shape being is formed by the inter-
secting diaphragm blades. While this type of defocus pro-
vides depth cues, they are difficult to exploit because it is
challenging to accurately estimate the amount of blur and
multiple images are often required.

To address this issue, the researchers explore the possi-
bility of deliberately introducing patterns into the aperture.
The captured image will still be blurred as a function of
depth, with the blur being a scaled version of the aperture
shape. However, the aperture filter can be designed to dis-
criminate between different depths. If the aperture shape is
known and fixed, there is only a single unknown parameter
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Figure 1. (Left) Image shows the input image, (Right) Image shows the depth map of the scene only for regions of interests. The different
color indicate the depths of each of the regions.

Figure 2. (Left) Image shows a cropped version of the input image, (Right) Image shows the focused output notice the plus size and 70
which is sharper in the right image as compared to the image on the left.

(the scale of the blur filter) that relates the blurred image (y) to its sharp version (x).
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Figure 3. A 2D thin lens model. A point on the focal plane which
is at a distance D from the lens is focused at a single point on the
sensor whereas a point at a distance Dk from the lens maps to
region rather than a point. Figure credits [9]

In real-world scenes, the depth is rarely constant
throughout the image. Instead, the scale of the blur in the
image (y) varies over its extent, while remaining locally
constant. This means that the challenge is to recover not
just a single blur scale, but a map of it over the entire im-
age. If this can be reliably achieved, it would have practical
utility, as the depth of the scene could be directly computed
and the captured image (y) could be decoded to recover the
sharp image (x). .

The above discussion only takes into account geometric
optics, but a more comprehensive treatment must also con-
sider wave effects, particularly diffraction. The diffraction
caused by an aperture is the Fourier power spectrum of its
cross-section. This means that the defocus blurring kernel
is the convolution of the scaled aperture shape with its own
power spectrum. In the case of objects in focus, diffraction
dominates, but for defocused areas, the shape of the aper-
ture is most important. As a result, the analysis of defocus
usually relies on geometric optics. While the theoretical
derivation is based on geometric optics, diffraction in prac-
tice by calibrating the blur kernel from real data.

2. Related Work

There are various techniques that can be used to extract
depth information from images. Active methods, such as
laser scanning [2] and structured light [12][15], involve the
use of additional illumination sources to capture 3D infor-
mation. Passive methods, on the other hand, do not require
additional intervention and rely on changes in viewpoint or
focus to recover the depth information. Examples of passive
methods include stereo imaging, which captures multiple
images from different viewpoints [14], and plenoptic cam-
eras [1] [13] [5] [10], which capture multiple viewpoints
in a single image at the cost of reduced spatial resolution.
Depth from focus and depth from defocus techniques [7] [4]
also use multiple images taken from a single viewpoint with
different focus settings to estimate the depth. While these
methods can produce high-quality depth estimates, they of-
ten require multiple images and may not be practical for

personal photography.

There have also been attempts to use optical masks [8]
[6] to estimate depth from a single image, but these ap-
proaches have either not produced high quality images or
have only been tested on synthetic images. The goal of the
method described in this work is to infer both depth and
an image from a single shot without the need for additional
user input or loss of image quality.

Another approach to depth estimation is the creation of
an all-focus image, which is independent of depth. Wave-
front coding [3] is one technique that achieves this by using
phase plates to deliberately defocus light rays so that the de-
focus is the same at all depths, resulting in an image with
a large depth of focus but no simultaneous depth estimates.
Coded aperture methods, which have been used in astron-
omy and medical imaging, also allow the collection of more
light but do not require the estimation of blur scale as the
blur is uniform across the image.

There are several methods for retrieving regions of in-
terest (ROIs) in an image. The advent of machine learn-
ing has fast-tracked this task. There are numerous meth-
ods using machine learning models to identify and classify
specific objects in an image. There are also methods that
involve partitioning an image into different segments, with
each segment representing a distinct region. Deep neural
networks have been widely used for these image segmenta-
tion tasks, as they can learn complex patterns in the data and
make accurate predictions. One popular approach to image
segmentation using deep neural networks is the use of fully
convolutional networks (FCN) [11], which are designed to
take an input image of any size and output a corresponding
segmentation map. FCNs are trained to classify each pixel
in the image into one of a set of predefined classes, such
as foreground or background. They can also be trained to
predict continuous values, such as the probability of a pixel
belonging to a certain class. Other popular approaches to
image segmentation using deep neural networks include the
use of encoder-decoder architectures and attention mecha-
nisms. These methods have achieved state-of-the-art results
on a variety of image segmentation tasks, including medical
image analysis and autonomous driving.

Overview The structure of this report is as follows: Sec-
tion 2 describes in detail the process of image capture and
post-processing used to obtain the depth map and obtain the
high-resolution image. In Section 4 we show the results
obtain using this method. We discuss the drawbacks and
caveats of this procedure in Section 5. Finally, we look at
some of the future directions for this line of work.
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3. Method
3.1. Debluring

Given an image and kernel to deconvolve the image
with there are numerous methods for deconvolution such
as inverse filtering, Weiner deconvolution, constrained least
squares, and iterative methods. Levin et. al. [9] suggest a
constrained least squares method for deconvolution that re-
lies on heavy priors to obtain the deconvolved image. We
however use wiener deconvolution. The main reason for us
to use Weiner deconvolution is that it does not have high
priors and is more efficient in terms of computing time.

Weiner deconvolution is a method for removing blur
from an image that has been distorted by a known blur ker-
nel. It is a type of inverse filtering technique that can be used
to restore a clear image from a blurry one. The method in-
volves mathematically reversing the effects of the blur ker-
nel by dividing the blurry image by the kernel, with the goal
of reconstructing the original, clear image.

One of the advantages of Weiner deconvolution is that
it takes into account the noise present in the image, which
can be a major problem with other deconvolution meth-
ods. It does this by using a statistical measure called the
mean square error (MSE) to determine the optimal bal-
ance between removing blur and preserving image detail.
The method also allows for the inclusion of a regulariza-
tion term, which can help to smooth out noise and prevent
overfitting.

G(f) =
1

H(f)

(
1

1 + 1
|H(f)|2SNR(f)

)

Here, 1/H(f) is the inverse of the original system,
SNR(f) is the signal-to-noise ratio, and |H(f)|2SNR(f)
is the ratio of the pure filtered signal to noise spectral den-
sity

While Weiner deconvolution can be effective at remov-
ing blur from images, it does have some limitations. It is
most effective when the blur kernel is known and can be
accurately modeled, and it may not work as well when the
blur kernel is complex or varies across the image.

3.2. Filter search

After obtaining an image captured using the coded aper-
ture and the corresponding kernels at various scales, the
next step is to determine the regions within the image for
which the appropriate kernels should be applied in order
to deconvolve the image and obtain a high resolution ver-
sion. Identifying the correct kernel for a particular region
also provides the information for the depth of the object in
the image. This is the a direct consequence of the concept
described in section 1.

Levin et. al. [9] pose their model to give the likelihood
of a blurry input image y for a filter f at the scale k for the
equation 1. They use an energy estimate to decide the corect
filter scale.

Instead of using the criterion previously described, we
utilize a simple measure of sharpness to determine the ap-
propriate filter for different regions in the image. According
to research by Levin et al. [9], a well-designed coded filter
is capable of accurately identifying the scale across multi-
ple scales. Therefore, we use the L1-norm of the gradients
of the deblurred images as the criterion for assigning the
correct scale.

When an image is captured, if the object in the image
is a flat plane at a constant distance from the camera, the
blur in the image will be uniform. In this case, restoring
the image to its sharp state would involve estimating a sin-
gle blur scale for the entire image. However, in real-world
scenes, there are often variations in depth, which means that
a separate blur scale needs to be inferred for each pixel in
the image. To address this issue, a practical solution is to
use small local windows within which the depth is assumed
to be constant. However, if the windows are too small, the
depth classification may be unreliable, particularly when the
window contains little texture.

To deblur the entire image, we use a set of scaled ker-
nels to generate K possible decoded images. For each scale,
we compute the L1-norm of the gradients. A decoded im-
age using a particular scale will usually provide a smooth
and plausible reconstruction for parts of the image where
that scale is the true scale. However, for areas of the image
where the depth differs from the scale being used, the recon-
struction will contain serious ringing artifacts and will not
be plausible. These artifacts will result in a high L1-norm
of the gradients for these areas.

One of the primary benefits of utilizing this criterion is
that it allows for the simultaneous deblurring of the input
image using all of the available kernels. By applying this
method, we can identify those regions of the image that
demonstrate the highest level of sharpness across different
kernels, which can then be used to determine the appropri-
ate scale for deblurring the entire image. This approach has
the advantage of being able to process the deblurring of the
input image in parallel, rather than sequentially, potentially
leading to a more efficient and effective deblurring process.
Figure 4 shows a crop of the input image deblurred using
kernels at different scales.

3.3. RoI selection

Using the method described above, we can determine the
scale needed to deblur each region in the image. However,
this local approach, while effective at capturing a significant
amount of information, can also be quite noisy, particularly
for regions with uniform, textureless surfaces. To improve
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Figure 4. Figure shows the deconvolved image using kernels at different scales. When an incorrect kernel is used to deconvolve it produces
artifacts.

the quality of the reconstruction and the estimated depths,
we perform the reconstruction process on segments of the
image that are identified as regions of interest. We seg-
ment different regions of the image using a pre-trained im-
age segmentation model that has been trained on the COCO
dataset. The figures 5 and 6 below illustrate the bounding
boxes and segmented areas for a given image.

4. Results
The table scene shown in Figure 7 contains the objects at

different depths. The depth map, which was obtained pro-
vides a fairly accurate reconstruction of the distances from
the camera for each of the 3 objects. We see that different
scales were selected for each object, the color of the RoI
represents the index of the filter chosen for that particular
region.

In addition to using segments of the image as regions of
interest, we also tried generating images without using any
regions of interest, as explained in Section 3.3. The figure
in 8 shows the depth estimated using this approach. To de-
convolve the input image, we used a 20x20 patch locally
with all of the kernels and used a sharpness measure (de-
scribed in Section 3.2) to assign the scale of the filter. It is
important to note that this approach results in noisy depth
estimates and also produces incorrect depth estimates for
objects that are the farthest away.

5. Failure cases

This method performs resonably well on images with
few objects but there are few drawbacks:

• Since the deconvolution doesn’t have much prior as
such, it results in artifacts as shown in Figure 9

• The method heavily relies on the outputs of the seg-
mentation model. If the regions are incorrectly de-
tected or if some objects are missed then the final out-
put also be incorrect.
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